t (minutes)	0	2	5	9	10
$H(t)$ (degrees Celsius)	66	60	52	44	43

2. As a pot of tea cools, the temperature of the tea is modeled by a differentiable function H for $0 \leq t \leq 10$, where time t is measured in minutes and temperature $H(t)$ is measured in degrees Celsius. Values of $H(t)$ at selected values of time t are shown in the table above.
(a) Use the data in the table to approximate the rate at which the temperature of the tea is changing at time $t=3.5$. Show the computations that lead to your answer.
(b) Using correct units, explain the meaning of $\frac{1}{10} \int_{0}^{10} H(t) d t$ in the context of this problem. Use a trapezoidal sum with the four subintervals indicated by the table to estimate $\frac{1}{10} \int_{0}^{10} H(t) d t$.
(c) Evaluate $\int_{0}^{10} H^{\prime}(t) d t$. Using correct units, explain the meaning of the expression in the context of this problem.
(d) At time $t=0$, biscuits with temperature $100^{\circ} \mathrm{C}$ were removed from an oven. The temperature of the biscuits at time t is modeled by a differentiable function B for which it is known that $B^{\prime}(t)=-13.84 e^{-0.173 t}$. Using the given models, at time $t=10$, how much cooler are the biscuits than the tea?

WRITE ALL WORK IN THE EXAM BOOKLET.

